关于MCP#
mcp是什么?它解决了什么?

按照anthropic的说法,MCP解决了数据的隔离,提供了一个通用的开放标准,使得AI系统访问数据更加容易
我有这么一个使用场景:
我在一名叫luogu的文件夹里面写了很多算法题,想要总结到特定文件夹的一个特定markdown文件里面,我可以使用mcp来解决这个问题吗?
首先需要解决的就是让mcp可以做到读取文件,然后写入文件
动手构建MCP#
开始动手写一个mcp的sevrer
按照官方的流程,需要安装uv(一个由Rust编写的python包管理客户端)
我是windows系统,所以用下面的命令
1
| powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
|
如果是macos或者linux系统,可以用下面的命令
1
| curl -LsSf https://astral.sh/uv/install.sh | sh
|

之后进行项目的初始化,我将这个sever命名为algomd
1
2
3
4
5
6
7
8
9
10
11
12
| # Create a new directory for our project
uv init algomd
# Create virtual environment and activate it
uv venv
source .venv/bin/activate
# Install dependencies
uv add "mcp[cli]"
# Create our server file
new-item algomd.py
|
具体server端的开发可以按照这个MCP官方文档
我这里写了一个简单的server,用来实现我想要的功能
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
| from typing import Any
import httpx
from mcp.server.fastmcp import FastMCP
import os
from pathlib import Path
from datetime import datetime
from typing import Optional
# Initialize FastMCP server
mcp = FastMCP("algomd")
@mcp.tool()
async def read_algo() -> dict:
"""Read the content of all .cpp files in D:\\code\\luogu directory."""
# Set the target path
cpp_files_path = Path("D:\\code\\luogu")
# Check if the path exists
if not cpp_files_path.exists():
return {"error": f"Path {cpp_files_path} does not exist"}
# Dictionary to store file paths and their contents
cpp_files_content = {}
# Find all .cpp files
cpp_files = list(cpp_files_path.glob("**/*.cpp"))
# Process files
for i, cpp_file in enumerate(cpp_files):
try:
# 直接使用 print 或日志记录进度,不再使用 ctx
print(f"Reading file ({i+1}/{len(cpp_files)}): {cpp_file}")
# Read the content of each file with UTF-8 encoding
with open(cpp_file, 'r', encoding='utf-8') as file:
content = file.read()
# Store the file path as string and its content
cpp_files_content[str(cpp_file)] = content
except Exception as e:
# Handle potential errors (like encoding issues)
cpp_files_content[str(cpp_file)] = f"Error reading file: {str(e)}"
return cpp_files_content
@mcp.tool()
def save_to_markdown(
content: str,
prompt: Optional[str] = None,
filename: Optional[str] = None
) -> dict:
"""
Save LLM-generated content to a markdown file.
Args:
content: The text content to save in the markdown file
prompt: Optional prompt that generated the content
filename: Optional custom filename (without extension)
Returns:
Dictionary with status information
"""
# 固定的保存路径
save_dir = Path("D:/code/ai_outputs")
# 创建目录(如果不存在)
save_dir.mkdir(parents=True, exist_ok=True)
# 生成文件名(如果未提供)
if not filename:
timestamp = datetime.now().strftime("%Y%m%d-%H%M%S")
filename = f"llm-output-{timestamp}"
# 确保文件名有.md扩展名
if not filename.endswith(".md"):
filename = f"{filename}.md"
# 完整的文件路径
file_path = save_dir / filename
try:
# 准备文件内容
file_content = []
# 添加元数据部分
file_content.append("---")
file_content.append(f"created: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
file_content.append(f"user: {os.getenv('USERNAME') or 'LOTUSSSB'}")
if prompt:
file_content.append(f"prompt: |\n {prompt.replace(chr(10), chr(10) + ' ')}")
file_content.append("---")
file_content.append("") # 空行分隔元数据和内容
# 添加正文内容
file_content.append(content)
# 写入文件
with open(file_path, "w", encoding="utf-8") as f:
f.write("\n".join(file_content))
return {
"success": True,
"file_path": str(file_path),
"file_size": os.path.getsize(file_path),
"message": f"Content successfully saved to {file_path}"
}
except Exception as e:
return {
"success": False,
"error": str(e),
"message": f"Failed to save content: {str(e)}"
}
if __name__ == "__main__":
# Initialize and run the server
mcp.run(transport='stdio')
|
看到有说可以测试mcp服务器的功能(官方文档里面没这个指南),我就尝试了一下
调试mcp的时候出现了没有npx的报错

查看报错的cli.py文件原来是如果要用dev服务器,需要安装npx

安装后进入流程

再次启动dev服务器,在浏览器中输入 http://localhost:5173 即可进入dev页面
点击左侧的connect按钮,如果一切安好,就能正常连接到你写的mcp server了

注意:如果你这一步有问题,可能出现显示到连接的文件路径有问题,一般是server代码的问题
连接成功后,在上方的Tools就能看到你写的server功能了

不过这个dev界面我没有过多探索
直接上cladue desktop吧!(急迫
用命令行输入(windows系统)
1
| code $env:AppData\Claude\claude_desktop_config.json
|
打开的这个就是claude desktop的配置文件,按照官方文档的说法,需要在这个文件中添加一个新的配置项,这个配置项是你的mcp server的地址
1
2
3
4
5
6
7
8
9
10
11
12
13
| {
"mcpServers": {
"algomd": {
"command": "uv",
"args": [
"--directory",
"D:\\code\\mcp\\algomd",
"run",
"algomd.py"
]
}
}
}
|
这里的algomd是我项目初始化的时候的文件夹名以及server的名字
D:\code\mcp\algomd 是我的mcp server的文件夹路径,algomd.py是我的mcp server的文件名,这样就添加好了mcp tools
打开claude desktop,就会对话栏右下角多了个锤子并且显示了MCP的Tool可用状态

点开可以看到你的mcp tools的功能,里面内含有你写的prompt

我发起询问:你可以读取我的 D:\code\luogu 里面的文件吗?

这时候LLM就会很聪明地请求调用MCP server,请求权限,通过后就可以他就可以读取文件了

当我再次发起询问:请使用 save_to_markdown 工具将 P8225.cpp 和 CF504E.cpp 的内容(包括它们的时间复杂度和空间复杂度)总结成一篇博客文章,并输出到指定文件
这时候,他会再次请求tools的权限,通过后就可以使用tools来写博客了


他的输出如下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
| ---
created: 2025-03-21 21:24:18
user: LOTUS
prompt: |
Create a detailed analysis of P8225.cpp and CF504E.cpp, including their algorithms, implementations, and time/space complexity.
---
# Analysis of Advanced Algorithms: CF504E and P8225
This blog post provides a detailed analysis of two competitive programming solutions focusing on their algorithms, implementations, and complexity.
## P8225: Genius Numbers Problem
### Problem Overview
The P8225.cpp file solves a problem involving "genius numbers" - numbers that consist entirely of 9s with a specific length pattern. A k-th level genius number is defined as a number that consists of all 9s, where the length of the number is a multiple of k.
For example:
- 1st level genius numbers: 9, 99, 999, ...
- 2nd level genius numbers: 99, 9999, ...
- 3rd level genius numbers: 999, 999999, ...
The problem asks whether a given number `n` can be represented as a sum of one or more k-th level genius numbers.
### Algorithm Analysis
The solution uses two approaches:
1. **Initial approach (not used in final solution)**: Dynamic programming
```cpp
bool checkForKGreaterThan1(ll n, int k) {
// Generate all possible k-level genius numbers
vector<ll> geniusNumbers;
for (int len = k; len <= 18; len += k) {
ll num = generateNines(len);
if (num > n) break;
geniusNumbers.push_back(num);
}
// DP approach: can we make sum n using these numbers?
vector<bool> dp(n + 1, false);
dp[0] = true;
for (ll num : geniusNumbers) {
for (ll i = num; i <= n; i++) {
if (dp[i - num]) {
dp[i] = true;
}
}
}
return dp[n];
}
|
由于太长我就不放完了,总之出来的效果还是不错的,写好这个mcp server后,可以帮我节省不少时间
以后写好的算法题,只需要调用这个mcp server,就可以自动生成博客文章了
参考:
vscode agent模式 https://code.visualstudio.com/blogs/2025/02/24/introducing-copilot-agent-mode
claude mcp https://www.anthropic.com/news/model-context-protocol
mcp官方手册 https://modelcontextprotocol.io/quickstart/user
https://modelcontextprotocol.io/docs/concepts/tools
https://modelcontextprotocol.io/quickstartserver#why-claude-for-desktop-and-not-claude-ai
https://zhuanlan.zhihu.com/p/29001189476
https://xjzsq.ren/2018/07/18/luogu/